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1 Introduction

In this note we describe a relatively new result — a consecpienh positive dynami-

cal entropy of a process. It concerns the behavior of therretme random variables

R, (z) for largen (the same as treated by the Ornstein—Weiss Return Timesé&ren
[Ornstein and Weiss, 1993], but in a complementary maniiém.theorem has a very
interesting interpretation, easy to articulate in a lamguaccessible also to nonspecial-
ists. Yet, as usually at such occasions, one has to be vetipgawand not get enticed
into pushing the conclusions too far. We begin this chapitr avshort historical note
concerning the debate on the Law of Series in the colloquégning. We explain how
theErgodic Law of Seriesontributes to this debate. Then we pass to the mathematical
proof preceded by introducing a number of ergodic-theotetls.

2 History of the Law of Series

In the colloquial language, a “series” happens when a ranelant, usually extremely
rare, is observed surprisingly often throughout a periotinoé. Even two repetitions,
one shortly after another, are often interpreted as a “seriehe Law of Series is the
belief that such series happen more often than they shoufpiurg chance” (whatever
that means). This belief is usually associated with anottieat there exists some
unexplained force or rule behind this “law”. A number of idis, such as “run of good
luck” or “run of misfortune”, or proverbs like “misfortuneener comes alone”, exist
in nearly all languages, which confirms that people have egicing this kind of
mystery since a long time. The most commonly known examiésavies” are runs
of good luck in gambling with the famous case of Charles Wlking the lead (see
e.g.Charles Wells (gambleln Wikipedia).

Serial occurrences of certain types of events is perfecttietstandable as a result
of physical dependence. For example, volcanic eruptiopgapin series during pe-



riods of increased tectonic activity. Another good exantmee are series of people
falling ill due to a contagious disease, or very simply, retuof certain motifs in fash-
ion design. The dispute around the Law of Series clearly earsconly such events for
which there are no obvious clustering mechanisms, and waretexpected to appear
completely independently from each-other, and yet, theggmear in series. With this
restriction the Law of Series belongs to the category of plesed mysteries, such as
synchronicity, telepathy or even Murphy’s Law, and is oftemsidered a manifesta-
tion of paranormal forces that exist in our world and escapnsific explanation. This
might be the reason why, after the first burst of interestpasrscientists and journals
refused to get involved in the investigations of this andtesd topics. Below we review
the list of selected scientists involved in the debate.

Kammerer. An Austrian biologistPaul Kammere(1880-1926) was the first scien-
tist to study the Law of Series (law of seriality, in some siations). His bookDas
Gesetz der Serigkammerer, 1919] contains many examples from his and hisshea
lives. Richard von Mises in his book [von Mises, 1981] ddsesithat Kammerer con-
ducted many (rather naive) experiments, spending hourariksmoting occurrences
of pedestrians with certain features (glasses, umbredtas, or in shops, noting pre-
cise times of arrivals of clients, and the like. Kammerestdivered” that the number
of time intervals (of a fixed length) in which the number of @tis under observation
agrees with the average is by much smaller than the numbete®als, where that
number is either zero or larger than the average. This, heedrgrovided evidence
for clustering. From today’s perspective, Kammerer meneled the perfectly normal
spontaneous clustering of signals in the Poisson processerttieless, Kammerer’s
book attracted some attention of the public, and even of smmeus scientists, toward
the phenomenon of clustering. Kammerer himself lost aitthdue to accusations
of manipulating his biological experiments (unrelated tw twpic), which eventually
drove him to suicide.

Pauli and Jung. Examples of series are, in the popular culture, mixed witingples
of other kinds of “unbelievable” coincidences. Pioneenpties about coincidences (in-
cluding series) were postulated not only by Kammerer but bisa noted Swiss psy-
chologist Carl Gustav Jung (1875-1961) and a Nobel priz&@rim physics, Austrian,
Wolfgang Pauli (1900-1958). They believed that there axisliscovered physical “at-
tracting” forces driving objects that are alike, or have ooom features, closer together
in time and space (so-called synchronicity) [see e.g. JaddPauli, 1955; Jung, 1977].

Moisset The Law of Series and synchronicity interests the invastigs of spirituality,
magic and parapsychology. It fascinates with its poterntiajenerate “meaningful
coincidences”. A Frenchman Jean Moisset (born 1924), aeskeifated specialist in
parapsychology, wrote a number of books on synchronicayy bf Series, and similar
phenomena. He connects the Law of Series with psychokiaesislaims that it is
even possible to use it for a purpose [Moisset, 2000].

Skeptics: Weaver, Kruskall, Diaconis and others In opposition to the theory of
synchronicity is the belief, represented by many statatis, among others by Warren
Weaver (closely collaborating with Claude Shannon), thatseries, coincidences and
the like, appear exclusively by pure chance and that thene isysterious or unex-
plained force behind them. People’s perception has thesterydto ignore all those



sequences of events which do not posses the attribute of leinsual, so that we
largely underestimate the size of the sample space, whefretiusual events” are ob-
served. Human memory registers coincidencies as morednégimply because they
are more distinctive. This is the “mysterious force” behéydichronicity.

With regard to series of repetitions of identical or simésents, the skeptics’ ar-
gumentation refers to the effect of spontaneous clusteiffimg an event, to repeat in
time by “pure chance” means to follow a trajectory of a Paispoocess. In a typi-
cal realization of a Poisson process the distribution ofiglg along the time axis is
far from being uniform; the gaps between signals are sonestibigger, sometimes
smaller. Places where several smaller gaps accumulatei{whviously happens here
and there along the time axis) can be interpreted as “speatesnclusters” of signals.
It is nothing but these natural clusters that are being eesieand over-interpreted
as the mysterious “series”. Richard von Mises clearly iaths that it is this kind of
“seriality” that has been seen by Kammerer in most of his grpents.

Yet another “cool-minded” explanation of synchronicitgdiuding the Law of Se-
ries) asserts that very often events that seem unrelatedd€rshould appear indepen-
dently of each-other) are in fact strongly related. Manyctdental” coincidencies or
series of similar events, after taking a closer look at thelmmaisms behind them, can
be logically explained as “not quite accidental”. Ordinpaople simply do not bother
to seek the logical connection. After all, it is much moreiimg to “encounter the
paranormal”. This point of view is neatly described by Ratdatthews in some of
his essays. Criticism of the ubiquitous assumption of irdej@nce in various experi-
ments can be found in works of William Kruskal [e.g. Krusked88]. Percy Diaconis
is famous for proving that coin tosses in reality do not reprg an i.i.d. process [e.g.
Diaconis et al., 2007].

Summarizing, the debate concentrates around the majotionuies

e Does there indeed exist a Law of Series or is it just an illose matter of our
selective perception or memory?

So far, this debate has avoided strict scientific languagen @s subject is not pre-
cisely defined, and it is difficult to imagine appropriate etgtive experiments in a
controlled environment. Thus, in this approach, the dispaiprobably fated to remain
an exchange of speculations.

3 The ergodic law of series

We will describe a rigorous approach embedded in the ergbéiary. Surprisingly,
the study of stochastic processes supports the Law of Smgaast the skeptic point
of view, of course, subject to correct interpretation.

We begin with definitions oéttractingandrepelling, the tools allowing to formal-
ize the subject of study. Using the entropy theory we prowat ith nondeterministic
processes, for events of certain type (long cylinder satacting prevails, while re-
pelling (almost) does not exist — this is exactly how we ustiard the Ergodic Law of
Series.



One has to be very wary about the applicability of this theomgality. It concerns
only events of a specific form (long cylinders) and it givesjuantitative lower bound
on the time perspective at which the phenomenon becomesvabte Perhaps, it
might be applied in genetics, computer science, or in daiastnission, where one
deals with really long blocks of symbols, but again, withrerte caution. The theory
does not explain “runs of good luck”, or why “misfortune negemes alone”, because
such “series” are not repetitions of one and the same lorigdsA set. Nonetheless it
contributes to the general debate at the philosophic I&mperly understood Law of
Series is neither an illusion nor a paranormal phenomendr figorous mathematical
law.

3.1 Attracting and repelling in signal processes

By asignal processve will understand a continuous time (also discrete timesmihe
increment of time is very small) stochastic proc€Xs),>, defined on a probability
space((2, 2, 1) and assuming integer values, such that=X 0 a.s., and with nonde-
creasing and right-continuous trajectories- X;(w). We say that (for give € Q) a
signal (or several simultaneous signals) occurs at tinfehe trajectory X (w) jumps
by a unit (or several units) at

Definition 3.1. A signal process isomogeneous, for everyt, > 0 and every finite
collection0 < t; <ty < --- < t,, the joint distribution of the increments

Xty = Xy Keg = Xty ooy Xe,, = Xy 3.2)

n—1

is the same as that of

Kiatto = Rtyttos Kigtto — Ktgttos -1 Ktptto — Xty 1410

Assume that X has an expected vallgX,) = X € (0, co), which we call theén-
tensityof the signals. Using homogeneity and a standard divigjtaind monotonicity
argument, one shows that thE(X,) = t for everyt € R.

With a homogeneous signal process we associate a randoablieadiefined o2
and called thevaiting time

W(w) = min{¢ : X;(w) > 1}.

The most basic example of a homogeneous signal process Potb&on process
[see e.g. Feller, 1968]). It is characterized by two prdpsrtl. the increments as
described in (3.2) are independent, and 2. jumps by moreathannit have probability

zero. These properties imply that the distribution of iX the Poisson distribution

with the parametet, i.e., P{X, = k} = e"\t()}%k, k =0,1,..., whereA > 0

coincides with the intensity. The waiting time in a Poissongess has the exponential
distribution with the distribution function

F(t) =1 —e .

The independence between the increments means that tladssigriving before some
fixed time do not influence the future signals, i.e., the dgmarive “independently



from one-another”. This pattern of signal arrivals is ekaethat is intuitively de-
scribed as “by pure chance”. The Poisson process is theereferpoint while defining
any deviation from the “by pure chance” scheme.

We will consider two such deviationsttracting and repelling Intuitively, the
signalsattract each other if they have the tendency to occur in groups (adfecc
clustersor serieg, separated by periods of absence. Likewise, the sigapkd each
other if they have the tendency to occur more evenly disteidh@long the time. We
will put this intuition into a rigorous form. It turnes outahthese properties depend
solely on the distribution of the waiting time.

Definition 3.3. We say that the signalstract each other from a distan¢e> 0, if
Fw(t) <1 —e .

whereFy is the distribution function of the waiting time W anXl is the intensity.
Analogously, the signalepeleach other from a distane¢gif

Fw(t) >1- e M,
The differencdl — e=** — Fy(t)] is called theforce of attracting (or repelling) at

Why is attracting and repelling defined in this way? Consitlerrandom variable
X: (the number of signals in the time peri¢@ ¢]). As we know,E(X;) = At. On the
other handP{X; > 0} = P{W < ¢} = Fw(t). Thus

A
Fw(t)

represents the conditional expected number of signalseiimtierval(0, ¢] for thesew
for which at least one signal occurs there. Attracting fréma distance, as defined
above, means th&ty (¢) is smaller than the analogous distribution functionf&valu-
ated for the reference Poisson process. This implies thattibve conditional expected
number is larger in our process than in the Poisson prodessi(tmeratorat are the
same for both processes). This fact can be further expresstadlows: If we observe
the signal process for timeand we happen to observe at least one signal, then the ex-
pected number of all observed signals is larger than asyifah#ved “by pure chance”.
The first signal “attracts” further signals (within time ggh ¢). By homogeneity, the
same happens in any interv@l, s + ¢] of lengtht, contributing to an increased clus-
tering effect. Repelling is the converse: the first signaldcs the expected number of
signals in the observation period, contributing to a deswdeclustering, and a more
uniform distribution of signals in time (see Figure 1).

The force of attracting can be arbitrarily close to 1, whigppens when the dis-
tribution functionFy, remains near zero until large valuestdthis implies attracting
from all distances, except very small and very large onegr&marginal repelling can
occur). Suchry indicates that for most the waiting time is very long. In particular,
X1(w) = 0. Because the intensity(X) is a fixed numbeR, there must be a small
part of the spac@, where many signals arrive within a unit of time. In other dgyrwe

= E(X,|X; > 0)
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Figure 1: The distribution of signals along the time in pigss with the same intensity.

observe two types of behavior: long lasting silence obskwith very high probability
and rarely a swarm of signals. This kind of behavior will bdezhstrong attracting
(we neglect to put sharp formal boundseg for this new term).

On the other hand, it is not hard to see that the distributiorction Fy, cannot
exceed the functiomin{At, 1} (¢ > 0), which is attained for the process in which
the signals arrive periodically in time (with gaps equakit)) This is the maximally
repelling process, and the maximal force of repelling os@it = % and equalg !
(see Figure 2 below).

L

Figure 2: The distribution functioRy, in the Poisson, strongly attracting and strongly
repelling processes.

If a given process reveals attracting from some distanceepelling from another,
the tendency to clustering is not clear and depends on thigdppme perspective.
However, if there is only attracting (without repellingden at any time scale we shall
see the increased clustering. This type of behavior is dajestiof interest:

Definition 3.4. A homogeneous signal processeys the Law of Seriéfs
Fw(t) <1l- eiAt,

for all ¢, and the two functions are not equal.



In other words, the Law of Series is the conjunction of théofeing two postulates:
1. There is no repelling from any distance, and
2. there is attracting from at least one distance.
In practice, we agree to accept the presence of some “m#rgapeelling with force
much smaller than the force of the existing attracting asvehan the Figure 3. Let us
explain at this point that the distribution function of thaiting time is always concave
(this will become clear e.g. from the integral formula (3,®)ence it cannot be drawn
as just any distribution function.

Figure 3: The distributioffryy in a process that “nearly” obeys the Law of Series.

3.2 Decay of repelling in positive entropy

In an ergodic nonperiodic proce&x, P, i, T',S) (with P finite) fix a measurable sé&
and consider the signal process defined on the probabilityedX, 1), where signals
are occurrences of the evefiti.e.,

Xi(x) = #{n € (0,t] : T"x € B}.

This is adiscrete time homogeneous proce®e homogeneity (see Definition 3.1)
holds for integerty. By the Ergodic Theorem, the intensity equalsu(B), and
E(X:) = At holds for integert. Since every nonatomic standard probability space
is isomorphic to the unit interval (and the measure in ana@igyoonperiodic process
is nonatomic), we can draw (equipped with the meauyeg) as the intervalo, 1] and

we can arrange that the return timg Befined forx € B as

Rp(z) = min{n > 0:T"z € B}

increases from left to right. Then the graph of the returretiRg coincides with the
roof of the skyscraper oveB representing the entire spade Now, the same graph
reflected about the diagonal represents the distributinction Gz of Rp.

Notice that there is a relation betwe€g and the distribution functiofiz of the
waiting time W in this process; by an elementary consideration of the skpsc
(which we leave to the reader) one easily verifies that, fgriaregert,

Fp(t) = u(B) Z(l —Gp(i)) (3.5)

(thusGp(t) =1 — W) Both functions are determined by their values at

integer arguments. Thus it is completely equivalent whetlestudy the distribution



of the return time variable (defined d®), or of the waiting time variable (defined on
X).

The Law of Series in occurrences of the evéntan be nicely expressed in terms
of the shape of the skyscraper abaBe the formula (3.5) translates the inequality
Fs < 1 — e~ into the following property of the shape of the skyscraper:

e At any point¢t € B the area above the graph efiog(%s) and below the roof
function to the left oft (i.e., fors < t) must not exceed the area below the graph
of —@ and above the roof function to the left of

This property is explained graphically on the Figure 4. Imtipalar, the graph

Figure 4: The first two skyscrapers are not admitted by the aBSeries, the last one
is. The dark-grey area must be smaller than or equal to thedjrey area to the left.

of the roof function must start at zero tangentally to or betbe lines — 5. For
instance, the return time cannot be bounded below by a pesiiue.

Although the Ornstein-Weiss Theorem (see [Ornstein and$Vai993]) provides
some information about the return timg;RwhereB is a “typical” long cylinder, its
precise distribution orB, i.e., the shape of the skyscraper overis by no means
captured. Small deviations of the valgdog Rp () asz ranges ovet3 (allowed in
the Ornstein-Weiss Theorem mean, for largéuge deviations dbg Rz () i.e., huge
freedom in the proportions betweensR:) (hence also of W) at different points.
In order to be able to compare the distribution function of With the exponential
distribution functionl — e~** we will need completely different tools.

First of all, it will be convenient to change the time unitio i.e., to replace B
by Rp = u(B)Rp (and Wi by Wi = u(B)Wpg). We call this stemormalization
because th@ormalized return timeéhas expected value 1 (although thermalized
waiting timeW g may even have infinite expected value). This trick has mamarad
tages: (1) the signal process in this new time scale hassityeh hence the parameter
A disappears from the calculations, (2) the time of the signatess becomes nearly
continuous (the increment of time is now= p(B), which is very small), (3) the for-
mula (3.5) takes on, for the distribution functidfs of W andG s of R, the integral
form

Folt) ~ /O 1~ Gp(s) ds (3.6)

(up to accuracy:(B)), and (4) we can compare the behaviors of signal processes ob
tained for setdB of different measures. In particular, we can see what hapjretihe



limit when B represents longer and longer cylinders.

Rich literature is devoted to the subject of the limit distitions of the normalized
return (and waiting) time variables as the length of thentléirs grow, in specific types
of processes [see Coelho, 2000; Abadi, 2001; Abadi and GaR@)1; Durand and
Maass, 2001; Hirata et al., 1999; Haydn et al., 2005, andefezance therein]. Here
we will be mainly interested in consequences of the solemapBan of positive entropy.
For eachr define

Repn(x) = sup(ng (t) -1+ e_t)’
t>0
the maximal force of repelling of the cylindet? < P™ containingz. The main
theorem in the area is this this [Downarowicz and Lacroix,d0

Theorem 3.7(The Ergodic Law of Series)Let (X, P, u, T, S) be an ergodic process
with positive entropy, wher@ is finite. Then

Rep, — 0 inL'(u).

n— oo

Because for functions bounded by a common boundZtheonvergence is the same
as the convergence in measure, the above can be equivagpthssed as follows: for
everye > 0 the measure of the union of all blocks of lengthB € P™ which repel
with forcee, converges to zero asgrows to infinity.

The above theorem asserts that the majority of sufficieatig kylinders reveals al-
most no repelling, in which they satisfy the first postuldtthe Law of Series (phrased
next to Definition 3.4). Examples show that arbitrarily sigattracting is admitted by
such cylinders, (and it is proved that in the majority of peges it indeed occurs; see
the last section of this chapter), hence they satisfy als@#itond postulate.

Question 3.8. It is unknown whether Theorem 3.7 holds also in the almostysulgere
convergence.

3.3 Theidea of the proof

The formal proof of Theorem 3.7 is too large for this note. Biheless we will sketch
the idea behind the proof. First of all, by applying the nakextension, we will assume
that the process is invertible, i.e., its symbolic représton is bilateral. We intend to
estimate (from above, by — e~ + ¢) the functionFg for a long cylinderB € P.
Instead of B, we can consider a concatenati®a € P[-™") (i.e., the cylinder set
BnAwith B € P~ A € P"), where the “positive” parfl has a fixed length, while
we allow the “negative” parB to be (sufficiently) long.

There are two key ingredients leading to the estimation. firseone is the (rather
nontrivial) observation that for a fixed typicBl € P~ the process induced d# (with
the conditional measurgg) generated by the partitioi” is nearly an independent
process and also nearly independent of the proce$809, iz, Ts, Z) generated by
the partitionQ depending on the return time (see the Figure 5). For the @xpps
purposes of this note we will skip the precise meaning of tiy¢and we skip any
traces of proof of this statement.
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Figure 5: The process . A_;AgA1 A, ... of blocks of length- following the copies
of B is a nearly independent process, nearly independent ofdbigigning of the
copies ofB.

The second key observation is explained below. We assumajrfplicity, full
independences in the preceding statement. Then, it is easdotv, that the strongest
repelling for BA occurs when the repelling db is the strongest, i.e., whe occurs
periodically. But if B does appear periodically, the return time®d has nearly the
geometric distribution, because it is a return time jjrendependent process (only the
increment of time is now equal to the constant gap betweeadbearrences oB). If p
is small, this geometric distribution, after normalizatias nearly the exponential law
1 — et. (The smallness af is regulated by the choice of the parametgr

3.4 Typicality of attracting for long cylinders

The preceding section provides evidence that in posititepy processes the occur-
rences of a selected long cylinder, in principle, do not kepéis corresponds to the
first postulate in the interpretation of Definition 3.4 of thaw of Series. As to the
second postulate (presence of attracting), of coursenitatzbe satisfied by long cylin-
ders in all positive entropy processes. For example, inntiependent process all long
cylinders occur with neither attracting nor repelling. T¢sme holds in sufficiently
fast mixing processes (see [Abadi, 2001] or [Hirata et &99]). But such processes
are in fact exceptional; in a “typical” process many blockseal strong attracting.
We know that a fixed dynamical systefiX, 2, u, T, S) gives rise to many processes
(X, P, u, T,S), each generated by some partiti®n\We can thus parametrize the pro-
cesses hy the partitions and use the complete metric steutttat exists on the space
of partitions to determine the meaning of “typicality™:

Definition 3.9. We say that a property of a process igypical in a certain class of
measure-preserving transformations, if for eveky, 2, 4, T, S) in this class, the set
of partitions? of cardinalitym > 2, such that the generated procé3s P, u, T, S)
has the property, is residual(i.e., contains a densg; set) in the spac&s,, of all
partitions into at mostn elements.

The theorem below captures the typicality of strong atingct

Theorem 3.10. The following property of a process is typical in the clasalbérgodic
measure-preserving transformations: There exists a sketnofthsN' © N with upper
density 1, such that for eveeyand sufficiently larger € N, with tolerances every
block of lengthn reveals strong attracting (with force— ¢) of its occurrences.
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Recall that strong attracting automatically eliminatgeetiéng other than marginal.
So, this theorem alone, implies that the majority of blocksedected lengths obey the
Law of Series. Nevertheless, blocks of other lengths maygty repel (but only if the
entropy is zero). Examples of such systems have been buithiina Grzegorek and
Michal Kupsa [Grzegorek and Kupsa, 2009]. In such systemthe overall picture,
where all long cylinders are taken into account, we can s@it a mixed behavior
without decisive domination of attracting over repelling.

Now we involve the following fact concerning entropy:

Theorem 3.11. Positive entropy is Rokhlin-typical and typical in the dlad measure-
preserving transformations with positive Kolmogorov&sientropy.

Combining the above two facts (recall that the intersectibtwo residual sets is
residual) with the Thoerem 3.7 of the preceding section waiplthat

¢ in the class of ergodic measure-preserving transformatiogwith positive en-
tropy, in a typical finitely generated process, long cylindes reveal almost no
repelling, while many of them reveal strong attracting.

This time we do have decisive domination of attracting oegetling. This is the full
strength of the Ergodic Law of Series.

The following example shows how the Ergodic Law of Seriesroanifest itself in
reality. Of course, it should be treated with due reserve.

Example 3.12. Consider the experiment of randomly generating independent A$@thc-
ters (the monkey typing). In theory this is an independent procesetevgry possible long
block should appear with positive probability and it should reveal neitygelling nor attract-
ing. In reality, however, the independence of the consecutive outc@mm@perfect (there is no
perfect physical independence between any events in reality). Wiagsiconsider the process
as being generated by a slightly perturbed partition corresponding to thegaip Then there are
high chances that the process falls in the class of typical procesgess(tife entropy) described
in the above theorems. If so, then majority of blocks will obey the Law oeSend if we focus
on one particular long block (say the tex file of this note) it is quite likely thatdhoccurs it
will occur again very “soon” (compared with the expected waiting time, tvidaunimaginably
large).
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